K-quasi-additive fuzzy integrals of set-valued mappings*

WANG Guijun^{1 **} and LI Xiaoping²

(1. School of Mathematics Science, Tianjin Normal University, Tianjin 300074, China; 2. School of Management, Tianjin Normal University, Tianjin 300074, China)

Received April 18, 2005; revised July 14, 2005

Abstract We first define the quasi-addition and quasi-multiplication operations by introducing the inductive operator, and then, in the K-quasi-additive fuzzy measure space, we establish the K-quasi-additive fuzzy integral of a generally measurable set-valued mapping. Applying the integral transformation theorem, some basic properties of the K-quasi-additive fuzzy integrals with respect to this kind of set-valued mapping are studied. Finally, the generalized monotone convergence theorems of this kind of fuzzy integrals are obtained.

Keywords: set-valued mapping, inductive operator, integrable selections, K-quasi-additive fuzzy integrals.

Set-valued integral is a new theory, which was developed with the applications of economics, control theory, optimization, non-smooth analysis and statistics, etc., in the later period of the 1960s. Inspired by the problems in economics, Aumann^[1] defined the integral of the set-valued mapping on R^n according to the single-valued Lebesgue's integrable selection of the measurable set-valued mapping in 1965. At the middle period of the 1970s, Datko^[2], Artstein^[3] and Hiai et al. generalized many theories in R^n to the Banach space, discussed the set-valued condition expectation and the existence of the set-valued martingales, and gave the integral expressions of the bounded integrable set-valued mappings. From the 1980s to the 1990s, Sugeno et al. [4] and Zhang et al. [5,6] conducted much good work on the theory and applications of set-valued measure, stochastic set and set-valued stochastic process, respectively, especially in the research area of the integrals of fuzzy set-valued mappings.

With the emergence and development of fuzzy measures and fuzzy integrals, establishment of the fuzzy integral of the set-valued function is considered. However, a fuzzy measure does not satisfy general additivity, which makes the fuzzy integral not linear. Thus, such defined set-valued integral is very difficult to study. In a more common non-continuous fuzzy measure space, for the measurable set-valued mapping, Jang^[7] defined the fuzzy Choquet integral with respect to the set-valued mapping in 1997, and gave some basic properties of this kind of fuzzy Choquet in-

tegrals. Furthermore, some expressions for fuzzy Choquet integrals of set-valued mappings were given in Ref. [8]. In this paper, based on our work in Refs. [9—12], the K-quasi-additive fuzzy integral of the set-valued mapping in the K-quasi-additive fuzzy measure space is established for the first time, and some elementary properties of this kind of K-quasi-additive fuzzy integrals are discussed by applying the integral transformation theorem. Finally, we give the generalized monotone convergence theorems of the K-quasi-additive fuzzy integrals.

1 Elementary definitions

Let X be a given classical set, $R^+ = [0, +\infty)$, \mathfrak{R} be a σ -algebra consisting of some subsets in X, (X,\mathfrak{R}) denote an arbitrarily given measurable space, and $P(R^+)$ denote a set of all the power sets on R^+ .

Definition 1.1. Let $K: R^+ \to R^+$ be a strictly increasing continuous function. If it satisfies the following conditions (1) K(0) = 0, K(1) = 1; (2) $\lim_{x \to +\infty} K(x) = +\infty$, then the function K is called an inductive operator defined on R^+ .

Clearly, the converse operator K^{-1} exists, and K^{-1} is still an inductive operator. Of course, K^{-1} is also continuous and increasing, and $K(K^{-1}(x)) = K^{-1}(K(x)) = x$ for all $x \in R^+$. For example, we may choose $K(x) = \ln[1 + (e-1)x]$, or K(x) = x for any $x \in R^+$, then $K^{-1}(x) = (e^x - 1)/(e-1)$ or

^{*} Supported by National Natural Science Foundation of China (Grant No. 70571056)

^{**} To whom correspondence should be addressed. E-mail: tjwgj@eyou.com

 $K^{-1}(x) = x$ for every $x \in R^+$. Obviously, K and K^{-1} are inductive operators.

Definition 1.2. Let K be a given inductive operator on R^+ , for all a, $b \in R^+$. Define the K-quasi sum" \bigoplus " and K-quasi product " \bigotimes " of a and b as follows: $a \bigoplus b = K^{-1}(K(a) + K(b))$, $a \bigotimes b = K^{-1}(K(a)K(b))$, for any a, b, c, $d \in [0, +\infty)$. Consequently we can obtain the following conclusions:

- (1) $(a \oplus b) \oplus c = a \oplus (b \oplus c)$, $(a \otimes b) \otimes c = a \otimes (b \otimes c)$;
- (2) $a \oplus b = b \oplus a$, $a \otimes b = b \otimes a$, $a \oplus 0 = a$, $a \otimes 0 = 0$, $a \otimes 1 = a$;
 - (3) $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$;
- (4) if $a \leqslant b$, $c \leqslant d$, then $a \oplus c \leqslant b \oplus d$ and $a \otimes c \leqslant b \otimes d$;
- (5) $K(a \oplus b) = K(a) + K(b)$ and $K(a \otimes b) = K(a) \cdot K(b)$;
- (6) $K^{-1}(a+b) = K^{-1}(a) \bigoplus K^{-1}(b)$ and $K^{-1}(a \cdot b) = K^{-1}(a) \bigotimes K^{-1}(b)$;
- (7) if $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty} \subset [0, +\infty)$, and $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, then $\lim_{n\to\infty} (a_n \oplus b_n) = a \oplus b$ and $\lim_{n\to\infty} (a_n \otimes b_n) = a \otimes b$.

Definition 1.3. Let (X, \Re) be an arbitrary measurable space, K be a given inductive operator, $\hat{\mu}:\Re{\to}[0, +\infty]$ be a set-function, if the following conditions (1)—(4) are satisfied:

- (1) $\hat{\mu}(\phi) = 0;$
- (2) if A, $B \in \Re$, and $A \cap B = \emptyset$, then $\hat{\mu}(A \cup B) = \hat{\mu}(A) \oplus \hat{\mu}(B)$;
- (3) if $\{A_n\}_{n=1}^{\infty} \subset \Re$, and $A_n \uparrow A$, then $\hat{\mu}(A_n) \uparrow \hat{\mu}(A)$;
- (4) if $\{A_n\}_{n=1}^{\infty} \subset \Re$, $A_n \downarrow A$, and there exists a natural number n_0 satisfying $\hat{\mu}$ $(A_{n_0}) < + \infty \Rightarrow \hat{\mu}(A_n) \downarrow \hat{\mu}(A)$, then $\hat{\mu}$ is called a K-quasi-additive fuzzy measure, and the corresponding triplet $(X, \Re, \hat{\mu})$ is called a K-quasi-additive fuzzy measure space.

Definition 1.4. [9,13] Let $(X, \Re, \hat{\mu})$ be a given K-quasi-additive fuzzy measure space, f be a nonnegative real valued measurable function on (X, \Re) ,

K be an inductive operator, $D = \{A_1, A_2, \cdots, A_n\}$ be an arbitrary finite measurable partition on X. Let $S_K(f,D,A) = \bigoplus \sum_{i=1}^n \left[\sup_{x \in A_i \cap A} f(x) \otimes \hat{\mu}(A_i \cap A)\right],$ and $\int_A^{(K)} f d\hat{\mu} = \sup_D S_K(f,D,A)$. Then $\int_A^{(K)} f d\hat{\mu}$ is called a K-quasi-additive fuzzy integral of f with respect to $\hat{\mu}$ on A. If $\sup_D S_K(f,D,A) < +\infty$, then f is called $K - \hat{\mu}$ integrable on A. The set of all the $K - \hat{\mu}$ integrable functions on A are denoted as $L_A^1(\hat{\mu})$.

Lemma 1. [13] Let $(X, \Re, \hat{\mu})$ be a K-quasi-additive fuzzy measure space, K be an inductive operator, and $\mu(\cdot) = K(\hat{\mu}(\cdot))$. Then set-function μ is a classical Lebesgue measure.

Lemma 2. ^[9] (Transformation Theorem of Integral) Let $(X, \Re, \hat{\mu})$ be a K-quasi-additive fuzzy measure space, f be a nonnegative real valued measurable function on (X, \Re) , K be an inductive operator, $A \in \Re$. Then $\int_A^{(K)} f d\hat{\mu} = K^{-1} \left[\int_A K \circ f d\mu \right]$, and $\int_A^{(K)} f d\hat{\mu}$ exists if and only if its composite function $K \circ f$ is Lebesgue integrable on A. Here $\mu(\cdot) = K(\hat{\mu}(\cdot))$, $\int_A K \circ f d\mu$ is a classical Lebesgue integral, and μ is a classical Lebesgue measure.

Definition 1.5.^[7] Let (X, \mathfrak{R}) be a measurable space, $F: X \rightarrow P(R^+) - \{\phi\}$ be a set-valued mapping. If its graph is measurable, i. e. $Gr(F) = \{(x,y) \in X \times R^+ \mid y \in F(x)\} \in \mathfrak{R} \times B(R^+)$, then F is called a measurable set-valued mapping on X, where $B(R^+)$ is a Borel field on nonnegative real number set R^+ .

Definition 1.6. Let $(X, \mathfrak{R}, \hat{\mu})$ be a K-quasi-additive fuzzy measure space, $F: X \rightarrow P(R^+) - |\phi|$ be a measurable set-valued mapping, $A \in \mathfrak{R}$. Define $(K) \int_A F d\hat{\mu} := \left\{ \int_A^{(K)} f d\hat{\mu} \mid f \in S_A(F) \right\}$. Then $(K) \int_A F d\hat{\mu}$ is called a K-quasi-additive fuzzy integral of set-valued mapping F on A, where K is an inductive operator, $S_A(F) = |f \in L_A^1(\hat{\mu})| f(x) \in F(x)$ a.e. to A|, i.e. $S_A(F)$ denote all of the integrable selections of F on A. If $(K) \int_A F d\hat{\mu} \neq \emptyset$, then F is called K-quasi-integrable on A.

Remark 1. Obviously, by Definition 1.6, Lem-

ma 2 and Definition 1.4, we know that f is $K - \hat{\mu}$ integrable on A if $f \in S_A$ (F), which implies $K^{-1} \Big[\int_A K \circ f \mathrm{d}\mu \Big] < + \infty$ or $\int_A K \circ f \mathrm{d}\mu < + \infty$.

Definition 1.7.^[7] Let $(X,\mathfrak{R},\hat{\mu})$ be a K-quasi-additive fuzzy measure space, $A\in\mathfrak{R}$, a set-valued mapping F be K-quasi-integrable on A. If there exists an integrable function $h\in L^1_A(\hat{\mu})$ such that the norm $\|F(x)\|:=\sup_{\omega\in F(x)}|\omega|\leqslant h(x)$ for all $x\in X$, then F is called K-quasi-bounded integrable.

Definition 1.8.^[7] Let real number sets A, $B \in P(R^+) - \{\phi\}$, if the following conditions (1) and (2) are fulfilled: (1) for each $x_0 \in A$, there exists a $y_0 \in B$ such that $x_0 \leq y_0$; (2) for each $y_0 \in B$, there exists an $x_0 \in A$ such that $x_0 \leq y_0$. Then we call A is weaker than B, writing $A \leq B$.

Definition 1.9. Let real number sets A, $B \in P(R^+) - |\phi|$. Define the generalized quasi-sum, quasi-multiplication and number multiply operation of sets A and B, respectively:

$$A \bigoplus B := \{x \bigoplus y \mid x \in A, y \in B\},\$$

$$A \bigotimes B := \{x \bigotimes y \mid x \in A, y \in B\},\$$

$$k \bigotimes A := \{k \bigotimes x \mid x \in A\}\$$
for arbitrary constant $k \geqslant 0$.

Definition 1.10. Let (X, \Re) be a measurable space, F and G be measurable set-valued mappings on X. Denote their extension operations as follows:

(1)
$$(F \cup G)(x) = F(x) \cup G(x)$$
, $(F \cap G)(x) = F(x) \cap G(x)$ for all $x \in X$;

- (2) $(F \oplus G)(x) = F(x) \oplus G(x)$, $(F \otimes G)(x) = F(x) \otimes G(x)$ for all $x \in X$;
- (3) $(\alpha \otimes F)(x) = \alpha \otimes F(x) \quad \forall x \in X \text{ and for any constant } \alpha \in R^+$.

2 Elementary properties

In this paper, for simplicity, as for the given K-quasi-additive fuzzy measure space $(X, \Re, \hat{\mu})$, we always suppose K is a given inductive operator, and $S_A(F)$ denote all of the integrable selections of setvalued mapping F on A.

Theorem 2.1. Let $(X, \mathfrak{R}, \hat{\mu})$ be a given K-quasi-additive fuzzy measure space, F and G be measurable set-valued mappings, which are K-quasi-integrable on $A \in \mathfrak{R}$. Then $F \cup G$, $F \cap G$, and $F \oplus G$

are K-quasi-integrable on A. And if the composite function $K \circ f$ and $K \circ g$ are square integrable for any $f \in S_A(F)$ and $g \in S_A(G)$, then set-valued mapping $F \otimes G$ is K-quasi-integrable on A, too.

Proof. (1) We first prove that $F \cup G$ is K-quasi-integrable on A.

In fact, let $(K)\int_A F d\hat{\mu} \neq \phi$ and $(K)\int_A G d\hat{\mu} \neq \phi$. Thus, there certainly exist the integrable selections $f \in S_A(F)$ and $g \in S_A(G)$ on F such that $f(x) \in F(x)$ a.e. to A and $g(x) \in G(x)$ a.e. to A, respectively. In addition we can obtain

$$x_0 = \int_A^{(K)} f d\hat{\mu} = K^{-1} \left[\int_A K \circ f d\mu \right] < +\infty$$

and

$$y_0 = \int_A^{(K)} g d\hat{\mu} = K^{-1} \left[\int_A K \circ g d\mu \right] < + \infty.$$

Let $h(x) = f(x) \lor g(x)$, for all $x \in A$. Then $h(x) \in F(x) \cup G(x) = (F \cup G)(x)$ a.e. to A, and K^{-1} is strictly increasing. At the same time, we have

$$\int_{A}^{(K)} h \, \mathrm{d}\hat{\mu} = K^{-1} \Big[\int_{A} K \circ (f \vee g) \, \mathrm{d}\mu \Big]$$

$$= K^{-1} \Big[\int_{A} (K \circ f) \vee (K \circ g) \, \mathrm{d}\mu \Big]$$

$$\leq K^{-1} \Big[\int_{A} (K \circ f + K \circ g) \, \mathrm{d}\mu \Big]$$

$$= K^{-1} \Big[\int_{A} K \circ f \, \mathrm{d}\mu + \int_{A} K \circ g \, \mathrm{d}\mu \Big]$$

$$= K^{-1} \Big[\int_{A} K \circ f \, \mathrm{d}\mu \Big] \bigoplus K^{-1} \Big[K \circ g \, \mathrm{d}\mu \Big]$$

Therefore, h is an integrable selection on $F \cup G$.

Consequently, $z_0 = \int_A^{(K)} h \, \mathrm{d}\hat{\mu} \in (K) \int_A (F \cup G) \, \mathrm{d}\hat{\mu} \neq \emptyset$. By Definition 1.6, we know that set-valued mapping $F \cup G$ is K-quasi-integrable on A.

- (2) Similarly, let $h(x) = f(x) \land g(x)$ for each $x \in A$, we can prove that $F \cap G$ is K-quasi-integrable.
- (3) Let $m(x) = f(x) \oplus g(x)$ for every $x \in A$, then $m(x) \in F(x) \oplus G(x) = (F \oplus G)(x)$ a. e. to A, and we have

$$\int_{A}^{(K)} m \, \mathrm{d}\hat{\mu} = K^{-1} \left[\int_{A} K \circ (f \bigoplus g) \, \mathrm{d}\mu \right]$$
$$= K^{-1} \left[\int_{A} (K \circ f + K \circ g) \, \mathrm{d}\mu \right]$$

$$= K^{-1} \left[\int_A K \circ f d\mu \right] \bigoplus K^{-1} \left[\int_A K \circ g d\mu \right]$$

$$< + \infty.$$

Hence, m is an integrable selection on set-valued mapping $F \oplus G$. Let $z_0' = \int_A^{(K)} m \, \mathrm{d}\hat{\mu}$. Then $z_0' \in (K) \int_A (F \oplus G) \, \mathrm{d}\hat{\mu} \neq \emptyset.$

Consequently, $F \bigoplus G$ is K-quasi-integrable on A.

(4) Let $\psi(x) = f(x) \otimes g(x)$ for any $x \in A$. Then $\psi(x) \in F(x) \otimes G(x) = (F \otimes G)(x)$ a.e. to A, because $K \circ f$ and $K \circ g$ are square integrable, that is $\int_A (K \circ f)^2 \mathrm{d}\mu < + \infty$, $\int_A (K \circ g)^2 \mathrm{d}\mu < + \infty$ and K^{-1} is strictly increasing. According to Lemma 2 and Schwarz's inequality, we obtain

$$\int_{A}^{(K)} m \, \mathrm{d}\hat{\mu} = K^{-1} \Big[\int_{A} K \circ (f \otimes g) \, \mathrm{d}\mu \Big]$$

$$= K^{-1} \Big[(K \circ f) (K \circ g) \, \mathrm{d}\mu \Big]$$

$$\leqslant K^{-1} \Big[\Big(\int_{A} (K \circ f)^{2} \, \mathrm{d}\mu \Big)^{\frac{1}{2}}$$

$$\cdot \Big(\int_{A} (K \circ g)^{2} \, \mathrm{d}\mu \Big)^{\frac{1}{2}} \Big]$$

$$= K^{-1} \Big[\Big(\int_{A} (K \circ f)^{2} \, \mathrm{d}\mu \Big)^{\frac{1}{2}} \Big]$$

$$\otimes K^{-1} \Big[\Big(\int_{A} (K \circ g)^{2} \, \mathrm{d}\mu \Big)^{\frac{1}{2}} \Big]$$

$$< + \infty.$$

Thus, m is an integrable selection on $F \otimes G$, and $z_0'' := \int_A^{(K)} m \, \mathrm{d}\hat{\mu} \in (K) \int_A (F \otimes G) \, \mathrm{d}\hat{\mu} \neq \emptyset$. In this case, the set-valued mapping $F \otimes G$ is K-quasi-integrable on A.

Theorem 2.2. Let $(X, \Re, \hat{\mu})$ be a given K-quasi-additive fuzzy measure space, a set-valued mapping F be K-quasi-integrable, and A, $B \in \Re$ with $A \subset B$. Then $(K) \int_A F d\hat{\mu} < (K) \int_B F d\hat{\mu}$.

Proof. Let $x_0 \in (K) \int_A F d\hat{\mu} \neq \phi$. Then there exists an integrable selection $f \in S_A(F)$ such that

$$x_0 = \int_A^{(K)} f \mathrm{d}\hat{\mu} = K^{-1} \left[\int_A K \circ f \mathrm{d}\mu \right] < + \infty,$$

because $A \subseteq B$, considering the monotonicity of Lebesgue's integrals and the strictly increasing property of inductive operator K^{-1} , we can obtain

$$x_0 = K^{-1} \left[\int_A K \circ f d\mu \right] \leqslant K^{-1} \left[\int_B K \circ f d\mu \right]$$

$$= \int_{B}^{(K)} f d\hat{\mu} \in (K) \int_{B} F d\hat{\mu}.$$

Let $y_0 = K^{-1} \left[\int_B K \circ f d\mu \right]$. Then they satisfy $x_0 \le y_0 \in (K) \int_B F d\hat{\mu}$.

Using the similar method, we may prove that for any $y_0 \in (K) \int_B F d\hat{\mu} \neq \emptyset$, there exists an $x_0 \in (K) \int_A F d\hat{\mu}$ such that $x_0 \leqslant y_0$. Thus, by Definition 1.8, we get $(K) \int_A F d\hat{\mu} < (K) \int_B F d\hat{\mu}$.

Theorem 2.3. Let $(X, \mathfrak{R}, \hat{\mu})$ be a K-quasi-additive fuzzy measure space, the closed set-valued mapping F and G be K-quasi-bounded integrable, and F < G, $A \in \mathfrak{R}$. Then $(K) \int_A F d\hat{\mu} < (K) \int_A G d\hat{\mu}$.

Proof. Let $x_0 \in (K) \int_A F d\hat{\mu} \neq \phi$. Then there exists an integrable selection $f \in S_A(F)$ such that

$$x_0 = \int_A^{(K)} f d\hat{\mu} = K^{-1} \left[\int_A K \circ f d\mu \right] < + \infty,$$
 and $f(x) \in F(x)$ a.e. to A.

Because F(x) < G(x) for every $x \in X$, let $g(x) = \sup\{\omega \mid \omega \in G(x), \omega \ge f(x)\}$.

Since G(x) is a closed set, we have $g(x) \in G(x)$ and $g(x) \ge f(x)$. G is bounded integrable, so there exists a $K - \hat{\mu}$ integrable function $h \in L^1_A(\hat{\mu})$ such that

$$||G(x)|| = \sup_{\omega \in G(x)} |\omega| \leqslant h(x).$$

Then from $|\omega| \omega \in G(x)$, $\omega \geqslant f(x) | \subseteq |\omega| \omega \in G(x)$, we get

$$g(x) = \sup_{\omega \in G(x), \ \omega \geqslant f(x)} \omega \leqslant \sup_{\omega \in G(x), \ \omega \geqslant f(x)} |\omega|$$
$$\leqslant \sup_{\omega \in G(x)} |\omega| = ||G(x)|| \leqslant h(x).$$

Therefore, the function g is $K - \hat{\mu}$ integrable, i.e. $g \in S_A(G)$. Let $y_0 = K^{-1} \Big[\int_A K \circ g \, \mathrm{d} \mu \Big]$. Then we have $x_0 = K^{-1} \Big[\int_A K \circ f \, \mathrm{d} \mu \Big] \leqslant K^{-1} \Big[\int_A K \circ g \, \mathrm{d} \mu \Big] = y_0 = \int_A^{(K)} g \, \mathrm{d} \hat{\mu} \in (K) \int_A G \, \mathrm{d} \hat{\mu}$. On the other hand, for any $y_0 \in (K) \int_A G \, \mathrm{d} \hat{\mu} \neq \emptyset$, there exists an integrable selection $g \in S_A(G)$ such that $y_0 = K^{-1} \Big[\int_A K \circ g \, \mathrm{d} \mu \Big]$. From F(x) < G(x) for all $x \in X$, let $f(x) = \inf \{ \omega \mid \omega \in F(x), \omega \leqslant g(x) \}$.

Because F(x) is a closed set and bounded integrable,

similar to the above proof, we can obtain $f(x) \le g(x)$ and the function f is $K - \hat{\mu}$ integrable, too. Thus $f \in S_A(F)$ and

$$y_0 = K^{-1} \left[\int_A K \circ g \, \mathrm{d}\mu \right] \geqslant K^{-1} \left[\int_A K \circ f \, \mathrm{d}\mu \right]$$
$$= \int_A^{(K)} f \, \mathrm{d}\hat{\mu} := x_0 \in (K) \int_A F \, \mathrm{d}\hat{\mu}.$$

Hence, by Definition 1.8, we obtain

$$(K) \int_A F d\hat{\mu} < (K) \int_A G d\hat{\mu}.$$

Theorem 2.4. Let $(X, \mathfrak{R}, \hat{\mu})$ be K-quasi-additive fuzzy measure space, if inductive operator K satisfies $K(a)K\left(\frac{1}{a}\right)=1$, and the set-valued mapping F is K-quasi-integrable. Then for every constant $a\geqslant 0$ and $A\in\mathfrak{R}$, $(K)\int_{a}a\otimes F\mathrm{d}\hat{\mu}=a\otimes(K)\int_{a}F\mathrm{d}\hat{\mu}$.

Proof. Obviously, the conclusion holds whenever a=0. Without loss of generality, let a>0. Actually, on the one hand, for every $x_0\in (K)\int_A a\otimes F\mathrm{d}\hat{\mu}\neq \emptyset$, there exists an integrable selection $f\in S_A(a\otimes F)$ on $a\otimes F$ such that

$$x_0 = \int_A^{(K)} f d\hat{\mu} = K^{-1} \left[\int_A K \circ f d\mu \right] < + \infty.$$

Thus $f(x) \in (a \otimes F)(x) = a \otimes F(x)$ a.e. to

Let $g(x) = \frac{1}{a} \bigotimes f(x)$ for all $x \in X$. Applying Definition 1.2 and the hypothesis condition, we obtain

$$a \otimes g(x) = a \otimes \frac{1}{a} \otimes f(x)$$

$$= K^{-1} \left(K(a) K \left(\frac{1}{a} \right) \right) \otimes f(x)$$

$$= K^{-1}(1) \otimes f(x) = 1 \otimes f(x)$$

$$= f(x).$$

Therefore, $f(x) = a \otimes g(x) \in a \otimes F(x)$ a.e. to A, and $g(x) \in F(x)$ a.e. to A.

By Definition 1.2 (5) and (6), we can obtain $K^{-1} \left[\int_{A} K \circ g \, d\mu \right] = K^{-1} \left[\int_{A} K \left(\frac{1}{a} \otimes f(x) \right) d\mu \right]$ $= K^{-1} \left[\int_{A} K \left(\frac{1}{a} \right) K(f(x)) \right] d\mu$ $= K^{-1} \left[K \left(\frac{1}{a} \right) \int_{A} K \circ f d\mu \right]$ $= \frac{1}{a} \otimes K^{-1} \left[\int_{A} K \circ f d\mu \right]$ $< + \infty$

Hence, the function g is $K - \hat{\mu}$ integrable, thus g is an integrable selection of F, i. e. $g \in S_A(F)$, and $\int_{-\Lambda}^{(K)} g \, d\hat{\mu} \in (K) \int_{\Lambda} F \, d\hat{\mu}$. In this case, we have

$$x_{0} = K^{-1} \left[\int_{A} K \circ f d\mu \right]$$

$$= K^{-1} \left[\int_{A} K (a \otimes g(x)) d\mu \right]$$

$$= K^{-1} \left[\int_{A} K(a) K(g(x)) d\mu \right]$$

$$= K^{-1} \left[K(a) \int_{A} K \circ g d\mu \right]$$

$$= K^{-1} \left[K(a) \right] \otimes K^{-1} \left[\int_{A} K \circ g d\mu \right]$$

$$= a \otimes \int_{A}^{(K)} g d\hat{\mu} \in a \otimes (K) \int_{A} F d\hat{\mu}.$$

Consequently,

$$(K)\int_A a \otimes F d\hat{\mu} \subset a \otimes (K)\int_A F d\hat{\mu}.$$

On the other hand, for any $y_0 \in a \otimes (K) \int_A F d\hat{\mu} \neq \emptyset$, we have $\frac{1}{a} \otimes y_0 \in (K) \int_A F d\hat{\mu}$. Then there exists an integrable selection $f \in S_A(F)$ on F such that

$$\frac{1}{a} \bigotimes y_0 = \int_A^{(K)} f d\hat{\mu} = K^{-1} \left[\int_A K \circ f d\mu \right] < + \infty.$$
Let $g(x) = a \bigotimes f(x)$ for all $x \in X$, $f(x) \in F(x)$ $a \cdot e$. to A and $f \in L_A^1(\hat{\mu})$.

Therefore, $g(x) \in a \otimes F(x) = (a \otimes F)(x)$ $a \cdot e$. to A.

Similar to the above proof, we can easily prove $g \in S_A(a \otimes F)$, and

$$y_{0} = a \bigotimes \int_{A}^{(K)} f d\mu = a \bigotimes K^{-1} \left[\int_{A} K \circ f d\mu \right]$$

$$= K^{-1} \left[K(a) \int_{A} K \circ f d\mu \right]$$

$$= K^{-1} \left[\int_{A} K(a) (K(f(x))) d\mu \right]$$

$$= K^{-1} \left[\int_{A} K(a \bigotimes f(x)) d\mu \right]$$

$$= \int_{A}^{(K)} a \bigotimes f d\hat{\mu} \in (K) \int_{A} a \bigotimes F d\hat{\mu}.$$

Consequently, $a \otimes (K) \int_A F d\hat{\mu} \subset (K) \int_A a \otimes F d\hat{\mu}$. Furthermore, we have

$$(K)\int_{A} a \otimes F d\hat{\mu} = a \otimes (K)\int_{A} F d\hat{\mu}.$$

Theorem 2.5. Let $(X, \Re, \hat{\mu})$ be a K-quasi-addi-

tive fuzzy measure space, a set-valued mapping F be K-quasi-integrable, A, $B \in \Re$. Then

$$(K)\int_{A \cup B} F d\hat{\mu} < (K)\int_{A} F d\hat{\mu} \oplus (K)\int_{B} F d\hat{\mu}.$$

Proof. Let $x_0 \in (K) \int_{A \cup B} F d\hat{\mu} \neq \emptyset$. Then there exists an integrable selection $f \in S_A(F)$ such that $x_0 = \int_{A \cup B}^{(K)} f d\hat{\mu}$. As $A \cup B = (A - B) \cup B$ and $(A - B) \cap B = \emptyset$, $A - B \subseteq A$.

From the Lebesgue's integral property and the increasing of K^{-1} , we can derive

$$x_0 = K^{-1} \Big[\int_{A \cup B} K \circ f \mathrm{d}\mu \Big]$$

$$= K^{-1} \Big[\int_{A-B} K \circ f \mathrm{d}\mu + \int_B K \circ f \mathrm{d}\mu \Big]$$

$$\leqslant K^{-1} \Big[\int_A K \circ f \mathrm{d}\mu \Big] \oplus K^{-1} \Big[\int_B K \circ f \mathrm{d}\mu \Big].$$
Let $y_0 := K^{-1} \Big[\int_A K \circ f \mathrm{d}\mu \Big], \ z_0 := K^{-1} \Big[\int_B K \circ f \mathrm{d}\mu \Big].$
Then
$$x_0 \leqslant y_0 \oplus z_0$$

$$= \int_A^{(K)} f \mathrm{d}\hat{\mu} \oplus \int_B^{(K)} f \mathrm{d}\hat{\mu} \in (K) \int_A F \mathrm{d}\hat{\mu}$$

$$\oplus \int_B F \mathrm{d}\hat{\mu}.$$

On the contrary, for every $\omega_0 \in (K) \int_A F d\hat{\mu} \oplus (K) \int_B F d\hat{\mu}$, there certainly exist the integrable selection $f \in S_A(F)$ and $g \in S_B(F)$ such that

$$\omega_0 = K^{-1} \left[\int_A K \circ f d\mu \right] \bigoplus K^{-1} \left[\int_B K \circ g d\mu \right].$$

Let $h(x) = f(x) \land g(x)$, for all $x \in X$, from Theorem 2.1 (2), we can prove that function h is an integrable selection of F. Furthermore, we can obtain

$$\omega_0 = K^{-1} \left[\int_A K \circ f \mathrm{d}\mu + \int_B K \circ g \mathrm{d}\mu \right]$$

$$\geqslant K^{-1} \left[\int_{A-B} K \circ h \, \mathrm{d}\mu + \int_B K \circ h \, \mathrm{d}\mu \right]$$

$$= K^{-1} \left[\int_{A \cup B} K \circ h \, \mathrm{d}\mu \right].$$
Let $x_0 := K^{-1} \left[\int_{A \cup B} K \circ h \right]$, clearly, $\omega_0 \geqslant x_0$ and
$$x_0 = \int_{A \cup B}^{(K)} h \, \mathrm{d}\hat{\mu} \in (K) \int_{A \cup B} F \, \mathrm{d}\hat{\mu}.$$

By Definition 1.8, we have $(K) \int_{A \cup B} F d\hat{\mu} < (K) \int_{A} F d\hat{\mu} \oplus (K) \int_{B} F d\hat{\mu}$.

Theorem 2.6. Let $(X, \mathfrak{R}, \hat{\mu})$ be a K-quasi-additive fuzzy measure space, the set-valued mapping F and G be K-quasi-integrable, $A \in \mathfrak{R}$. Then

$$(1) \ (K) \int_{A} (F \cup G) \, d\hat{\mu} = (K) \int_{A} F d\hat{\mu} \cup (K) \int_{A} G d\hat{\mu};$$

(2)
$$(K)\int_A (F \cap G) d\hat{\mu} = (K)\int_A F d\hat{\mu} \cap (K)\int_A G d\hat{\mu}$$
.

Proof. On the one hand, for

any
$$x_0 \in (K) \int_A (F \cup G) d\hat{\mu} \neq \emptyset$$
,

there exists an integrable selection $m \in S_A(F \cup G)$ on $F \cup G$ such that

$$x_0 = \int_A^{(K)} m \, d\hat{\mu} = K^{-1} \left[\int_A K \circ m \, d\mu \right] < + \infty.$$

Here, the function $m \in L_A^1(\mu)$ and $m(x) \in (F \cup G)(x) = F(x) \cup G(x)$ a.e. to A, which follows that $m(x) \in F(x)$ a.e. to A or $m(x) \in G(x)$ a.e. to A. Thus, m is an integrable selection of F or G, i.e. $m \in S_A(F) \cup S_A(G)$, which means that $x_0 \in (K) \int_A F d\hat{\mu} \cup (K) \int_A G d\hat{\mu}$.

Consequently,

$$(K)\int_{A}(F\cup G)\mathrm{d}\hat{\mu}\subset (K)\int_{A}F\mathrm{d}\hat{\mu}\cup (K)\int_{A}G\mathrm{d}\hat{\mu}.$$
 On the other hand, for each $x_{0}\!\in\! (K)\int_{A}F\mathrm{d}\hat{\mu}\cup (K)$
$$\int_{A}G\mathrm{d}\hat{\mu}, \text{ without loss of generality, we let } x_{0}\in (K)\int_{A}F\mathrm{d}\hat{\mu}.$$
 Then there exists an integrable selection $f\!\in\! S_{A}(F)$ such that $x_{0}=(K)\int_{A}f\mathrm{d}\hat{\mu}$ and $f\!\in\! L_{A}^{1}(\hat{\mu}), \text{ i. e. } f(x)\!\in\! F(x) \text{ a. e. to }A.$ In addition, $f(x)\!\in\! F(x)\!\subset\! F(x)\cup G(x)=(F\cup G)(x)$ a.e. to A , that is, $f\!\in\! S_{A}(F\cup G)$ and $x_{0}\!\in\! (K)\int_{A}(F\cup G)\mathrm{d}\hat{\mu}.$

Therefore.

$$(K)\int_A F d\hat{\mu} \cup (K)\int_A G d\hat{\mu} \subset (K)\int_A (F \cup G) d\hat{\mu}$$
, Thus, we can obtain

$$(K)\int_{A} (F \cup G) d\hat{\mu} = (K)\int_{A} F d\hat{\mu} \cup (K)\int_{A} G d\hat{\mu}.$$

We can use the similar method to prove (2), so omit it.

Theorem 2.7. Let $(X, \mathfrak{R}, \hat{\mu})$ be a K-quasi-additive fuzzy measure space, the set-valued mapping F

and G be K-quasi-integrable, $A \in \Re$. Then $(K) \int_A (F \oplus G) d\hat{\mu} = (K) \int_A F d\hat{\mu} \oplus (K) \int_A G d\hat{\mu}.$

Proof. In fact, for any $x_0 \in (K) \int_A (F \oplus G)$ $d\hat{\mu} \neq \emptyset$, there exists an integrable selection $h \in S_A(F \otimes G)$ such that $x_0 = \int_A^{(K)} h d\hat{\mu} = K^{-1} \left[\int_A K \circ h d\mu \right] < + \infty$ and $h(x) \in (F \oplus G)(x) = F(x) \oplus G(x)$ $a \cdot e \cdot to A$. Hence, there exist $y_x \in F(x)$ and $z_x \in G(x)$ such that $h(x) = y_x \oplus z_x a \cdot e \cdot to A$. Thus $x_0 = K^{-1} \left[\int_A K(y_x \oplus z_x) d\mu \right]$ $= K^{-1} \left[\int_A (K(y_x) + K(z_x)) d\mu \right]$ $= K^{-1} \left[\int_A (K(y_x) + K(z_x)) d\mu \right]$

$$= K^{-1} \left[\int_{A} K(y_{x}) d\mu \right] \oplus K^{-1} \left[\int_{A} K(z_{x}) d\mu \right]$$

$$= \int_{A}^{(K)} y_{x} d\hat{\mu} \oplus \int_{A}^{(K)} z_{x} d\hat{\mu} \in (K) \int_{A} F d\hat{\mu}$$

$$\oplus K \int_{A} G d\hat{\mu}.$$
Using the similar method, from Theorem 2.5.

Using the similar method, from Theorem 2.5, we may prove that the anti-inclusion is tenable.

Hence, $(K) \int_A (F \oplus G) d\hat{\mu} = (K) \int_A F d\hat{\mu} \oplus (K) \int_A G d\hat{\mu}$ holds.

3 Generalized monotone convergence theorem

In this section, we first give the monotonity definitions of the sequence of sets and the set-valued mapping, and then, we discuss that the corresponding K-quasi-additive fuzzy integrals satisfy monotonity whenever the sequence of the K-quasi-integrable set-valued mappings satisfies monotonity, i. e. the generalized convergence theorems hold.

Definition 3.1.^[8] Let a sequence of sets $|A_n|_{n=1}^{\infty} \subset P(R^+)$, $A = |x| |x = \lim_{k \to \infty} x_{n_k}$, $x_{n_k} \in A_{n_k}|$, if $A_n \subset A_{n+1}$, $n = 1, 2, \cdots$. Then $|A_n|_{n=1}^{\infty}$ is called monotone increasing convergent to A, simply denoted as $A_n \uparrow A$. Let $A = |x| |x = \lim_{n \to \infty} x_n$, $x_n \in A_n|$, if $A_{n+1} \subset A_n$, $n = 1, 2, \cdots$. Then $|A_n|_{n=1}^{\infty}$ is called monotone decreasing convergent to A, simply denoted as $A_n \not \downarrow A$.

Definition 3.2. [8] Let $(X, \Re, \hat{\mu})$ be a K-quasi-

additive fuzzy measure space, $A \in \mathfrak{R}$, the sequence of measurable set-valued mappings $\{F_n\}_{n=1}^{\infty}$ be K-quasi-integrable, and the set-valued mapping F be K-quasi-integrable, too. If (1) $S_A(F_n) \subset S_A(F_{n+1})$, n=1, $2, \cdots$; (2) for any $f \in S_A(F)$, there always exists a monotone increasing integrable selection subsequence $f_{n_k} \in S_A(F_{n_k})$ $(k=1,2,\cdots)$ such that $\lim_{k\to\infty} f_k(x) = f(x)$ for all $x \in A$. Then $\{F_n\}_{n=1}^{\infty}$ is called monotone increasing convergent to F, written as $F_n \uparrow F$. If (3) $S_A(F_{n+1}) \subset S_A(F_n)$, $n=1,2,\cdots$; (4) for each $f \in S_A(F)$, there always exists a monotone decreasing integrable selection sequence $f_n \in S_A(F_n)$ such that $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \in A$. Then $\|F_n\|_{n=1}^{\infty}$ is called monotone decreasing convergent to F, written as $F_n \downarrow F$.

Theorem 3.1. Let $(X, \mathfrak{R}, \hat{\mu})$ be a K-quasi-additive fuzzy measure space, $A \in \mathfrak{R}$, the sequence of measurable set-valued mappings $\{F_n\}_{n=1}^{\infty}$ be K-quasi-integrable, a measurable set-valued mapping F be K-quasi-integrable, too. If $F_n \uparrow F$, then

$$(K)\int_{A}F_{n}\mathrm{d}\hat{\mu} \uparrow (K)\int_{A}F\mathrm{d}\hat{\mu}.$$

Proof. For an arbitrary certain natural number n, let $y \in (K) \int_A F_n d\hat{\mu} := A_n$. Then there exists an integrable selection $g \in S_A(F_n)$ such that

$$y = \int_A^{(K)} g \, \mathrm{d}\hat{\mu} = K^{-1} \left[\int_A K \circ g \, \mathrm{d}\mu \right] < + \infty.$$

Because $S_A(F_n) \subset S_A(F_{n+1})$, $n=1,2,\cdots$, it is easy to know $g \in S_A(F_{n+1})$ and $y = \int_A^{(K)} g \, \mathrm{d}\hat{\mu} \in (K) \int_A F_{n+1} \, \mathrm{d}\hat{\mu}$. Therefore, $A_n = (K) \int_A F_n \, \mathrm{d}\hat{\mu} \subset (K) \int_A F_{n+1} \, \mathrm{d}\hat{\mu} = A_{n+1}$.

On the other hand, for any $y \in (K) \int_A F d\hat{\mu} \neq \phi$, there exists $h \in S_A(F)$ such that $y = \int_A^{(K)} h d\hat{\mu}$.

Consider the continuity and monotone increasing property of inductive operators K^{-1} and K. From

the Monotone Convergence Theorem of Lebesgue's integrals, we can obtain

$$\begin{split} &\lim_{k \to \infty} y_{n_k} = \lim_{k \to \infty} \int_A^{(K)} h_{n_k} \mathrm{d}\hat{\mu} \\ &= \lim_{k \to \infty} K^{-1} \left[\int_A K \circ h_{n_k} \mathrm{d}\mu \right] \\ &= K^{-1} \left[\lim_{k \to \infty} \int_A K \circ h_{n_k} \mathrm{d}\mu \right] \\ &= K^{-1} \left[\int_A K \left(\lim_{k \to \infty} h_{n_k} \right) \mathrm{d}\mu \right] \\ &= K^{-1} \left[\int_A K \circ h \, \mathrm{d}\mu \right] = \int_A^{(K)} h \, \mathrm{d}\hat{\mu} = y \,. \end{split}$$

Obviously, $\int_{A}^{(K)} h_{n_k} d\hat{\mu} \in (K) \int_{A} F_{n_k} d\hat{\mu}$. By Definition 3.1, we can obtain $(K) \int_{A} F_n d\hat{\mu} \uparrow (K) \int_{A} F d\hat{\mu}$.

Theorem 3.2. Let $(X, \mathfrak{R}, \hat{\mu})$ be a K-quasi-additive fuzzy measure space, $A \in \mathfrak{R}$, the sequence of measurable set-valued mappings $\{F_n\}_{n=1}^{\infty}$ be K-quasi-integrable, a measurable set-valued mapping F be K-quasi-integrable, too. If $F_n \not F$, then

$$(K)\int_{A}F_{n}\mathrm{d}\hat{\mu} \downarrow (K)\int_{A}F\mathrm{d}\hat{\mu}.$$

Proof. First, similar to the proof of Theorem 4.1, it is obvious that

$$A_{n+1} = (K) \int_A F_{n+1} d\hat{\mu} \subset (K) \int_A F_n d\hat{\mu} = A_n.$$

Second, for every $\forall y \in (K) \int_A F d\hat{\mu} \neq \emptyset$, there exists an integrable selection $f \in S_A(F)$ such that

$$y = \int_A^{(K)} f d\hat{\mu} = K^{-1} \left[\int_A K \circ f d\mu \right] < + \infty.$$

Because $F_n
ildot F$, by Definition 3.2, there exists a decreasing integrable selection sequence $f_n \in S_A(F_n)$ $(n = 1, 2, \dots,)$ such that $\lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in A$.

Therefore, we can obtain

$$\lim_{n\to\infty} y_n = \lim_{n\to\infty} \int_A^{(K)} f_n d\hat{\mu} = \lim_{n\to\infty} K^{-1} \left[\int_A K \circ f_n d\mu \right]$$

$$\begin{split} &=K^{-1}\Big[\lim_{n\to\infty}\int_A K\circ f_n\mathrm{d}\mu\,\Big]\\ &=K^{-1}\Big[\int_A K\big(\lim_{n\to\infty}f_n\big)\mathrm{d}\mu\,\Big]\\ &=K^{-1}\Big[\int_A K\circ f\mathrm{d}\mu\,\Big]=\int_A^{(K)}f\mathrm{d}\hat{\mu}\,=\,y\,. \end{split}$$

On the other hand, it is obvious that

$$\int_A^{(K)} f_n d\hat{\mu} \in (K) \int_A F_n d\hat{\mu}.$$

Thus, from Definition 3.1, $(K) \int_A F_n d\hat{\mu} \quad \forall$ $(K) \int_A F d\hat{\mu}$ holds.

References

- 1 Aumann R. J. Integrals of set-valued functions. J. Math. Anal. Appl., 1965, 12: 1-12.
- 2 Datko R. Measurability properties of set-valued mappings in a Banach space. SIAM J. Control, 1970, 8: 226—238.
- 3 Artstein Z. Set-valued measures. Trans. Amer. Math. Soc., 1972, 165: 103—125.
- 4 Sugeno M. and Murofushi T. Pseudo-additive measures and integrals. J. Math. Anal. Appl., 1987, 122; 197—220.
- 5 Zhang W. X. and Li T. The representation theorem of set-valued measure. Acta Math. Sinica (in Chinese), 1998, 31: 200-208.
- 6 Zhang W. X. Set-valued Measure and Random Sets (in Chinese). Xi'an: Xi'an Jiaotong Univ. Press, 1989.
- 7 Jang L.C. Some properties of Choquet integrals of set-valued functions. Fuzzy Sets and Systems, 1997, 91(1): 95-98.
- 8 Jang L.C. and Kwon J.S. On the representation of Choquet integrals of set-valued functions, and null sets. Fuzzy Sets and Systems, 2000, 112(2); 233—240.
- 9 Wang G. J. and Li X. P. Absolute continuity of K-quasi-additive fuzzy integrals. Journal of Sichuan Normal University (in Chinese), 1998, 21(3): 251-255.
- 10 Wang G. J. and Li X. P. Null-additivity and absolute continuity of K-quasi-additive fuzzy number valued integrals. Theory and Practice of Systems Engineering (in Chinese), 2005, 25(1): 117—122.
- 11 Wang G. J. and Li X. P. Generalized Lebesgue integrals of fuzzy complex valued functions. Fuzzy Sets and Systems, 2002, 127(3): 363-370.
- 12 Wang G. J. and Li X. P. Autocontinuity and preservation of structural characteristics of generalized fuzzy number valued Choquet integrals. Advances in Mathematics (in Chinese), 2005, 34 (1): 91-100.
- 13 Jiang X. Z. tK-integral and Kt-integral. Journal of Sichuan Normal University (in Chinese), 1993, 16(2): 31—39.