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Abstract

We first define the quasi-addition and quasi-multiplication operations by introducing the inductive operator, and then, in

the K-quasi-additive fuzzy measure space, we establish the K-quasi-additive fuzzy integral of a generally measurable set-valued mapping.
Applying the integral transformation theorem, some basic properties of the K -quasi-additive fuzzy integrals with respect to this kind of set-
valued mapping are studied. Finally, the generalized monotone convergence theorems of this kind of fuzzy integrals are obtained.
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Set-valued integral is a new theory, which was
developed with the applications of economics, control
theory, optimization, non-smooth analysis and statis-
tics, etc., in the later period of the 1960s. Inspired
by the problems in economics, Aumann!!! defined the
integral of the set-valued mapping on R" according to
the single-valued Lebesgue’ s integrable selection of
the measurable set-valued mapping in 1965. At the
middle period of the 1970s, Datko'?!, Artstein!®! and
Hiai et al. generalized many theories in R” to the Ba-
nach space, discussed the set-valued condition expec-
tation and the existence of the set-valued martingales,
and gave the integral expressions of the bounded inte-
grable set-valued mappings. From the 1980s to the
1990s, Sugeno et al. 43 and Zhang et al. ® conduct-
ed much good work on the theory and applications of
set-valued measure, stochastic set and set-valued
stochastic process, respectively, especially in the re-
search area of the integrals of fuzzy set-valued map-

pings.

With the emergence and development of fuzzy
measures and fuzzy integrals, establishment of the
fuzzy integral of the set-valued function is considered.
However, a fuzzy measure does not satisfy general ad-
ditivity, which makes the fuzzy integral not linear.
Thus, such defined set-valued integral is very difficult
to study. In a more common non-continuous fuzzy
measure space, for the measurable set-valued map-
ping, Jang!”! defined the fuzzy Choquet integral with
respect to the set-valued mapping in 1997, and gave
some basic properties of this kind of fuzzy Choquet in-

tegrals. Furthermore, some expressions for fuzzy
Choquet integrals of set-valued mappings were given
in Ref. [8]. In this paper, based on our work in
Refs. [9—12], the K-quasi-additive fuzzy integral of
the set-valued mapping in the K-quasi-additive fuzzy
measure space is established for the first time, and
some elementary properties of this kind of K-quasi-
additive fuzzy integrals are discussed by applying the
integral transformation theorem. Finally, we give the
generalized monotone convergence theorems of the K-
quasi-additive fuzzy integrals.

1 Elementary definitions

Let X be a given classical set, R* =[0, + o),
R be a os-algebra consisting of some subsets in X,
(X,R) denote an arbitrarily given measurable space,

and P (R" ) denote a set of all the power sets on
R*.

Definition 1.1. Let K: R" =R " be a strictly
increasing continuous function. If it satisfies the fol-
lowing conditions (1) K(0) =0, K(1)=1; (2)

lim K(x) = + oo, then the function K is called an

z—+ 00

inductive operator defined on R ™.

Clearly, the converse operator K ! exists, and
K "' is still an inductive operator. Of course, K ~!is
also continuous and increasing, and K (K "'(z)) =
K Y K(x))=z forall tER". For example, we
may choose K(z)=In[1+(e—1)x], or K(z)==x
forany t€R"*, then K Y(z)=(e"—1)/(e-1) or
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K Y(xz)=2x for every z € R*. Obviously, K and
K ~! are inductive operators.

Definition 1.2. Let K be a given inductive op-
erator on R*, for all a, 8 € R*. Define the K-
quasi sum“@” and K-quasi product “@” of a and b
as follows: a®@b=K (K(a)+K(b)), a®b=
K YK(a)K(b)), forany a, b, ¢, d€E[0, + ).
Consequently we can obtain the following conclu-
sions:

(1) (aDb)Dc=aD(bDc), (a®b)RQc =
aQ(6Qc);

(2) aPb=06Da, aQRb=6Qa, aP0=a,
a®0=0, a@l=a;

(3) a@(bDc) = (a®b)D(a®c);

4) if a<<b, ¢c<d, then aPc<bDd and
a®Qc<bQd ;

(5) K(a®b)=K(a)+K(®) and K(a®b)
=K(a) K(b);

6) K ' (a+b5)=K ' (a)®K '(b) and
K Ya'5)=K (a)QK 1(b);

(7) if fa,)o_qs 110, [0, + ), and
lima,=a, limé, = b, then 1il?°(an@bn)=a®b

n—+x n

and li_En(a,,®b,,) =a®b.

Definition 1. 3. Let (X, R) be an arbitrary
measurable space, K be a given inductive operator,
i R—=>[0, + ] be a set-function, if the following
conditions (1)—(4) are satisfied:

(1) u($)=0;

(2) if A, BER, and ANB=4¢, then (AU
B)=p(A)YDu(B);

(3) if {1A,17_,CR, and A, } A, then p(A,)
A u(A);

(4) if {ALIS_CR, A,V A, and there exists a
natural number nq satisfying p (A,,o) < + o0 =>
u(A) ¥ 2 (A), then p is called a K-quasi-additive
fuzzy measure, and the corresponding triplet (X, R,
) is called a K-quasi-additive fuzzy measure space.

Definition 1.4.1 %) Let (X, R, ) be a given
K -quasi-additive fuzzy measure space, f be a non-
negative real valued measurable function on (X, R),

,A,! be

an arbitrary finite measurable partition on X. Let

Sk(£.0,A) =8 3] [ swp f(2)Dx(ANA)],

K be an inductive operator, D=1{A;, A3, *-

K K
and A fdu = stépSK (f, D, A). ThenJ fdp is
A

called a K-quasi-additive fuzzy integral of f with re-
spect to # on A. If supSk(f, D, A)< + o, then f
D

is called K — 1z integrable on A . The set of all the K —
integrable functions on A are denoted as LllA (n).

Lemma 1.1 Let (X, R, 22) be a K-quasi-addi-
tive fuzzy measure space, K be an inductive operator,
and u(*)=K(u(+)). Then set-function y is a clas-
sical Lebesgue measure.

Lemma 2. ! (Transformation Theorem of Inte-
gral ) Let (X, R, ») be a K-quasi-additive fuzzy
measure space, f be a nonnegative real valued mea-

surable function on ( X, R), K be an inductive opera-
(K)

tor, AE R ThenJ- Fdp = K“U K- fdu ],
A A

(K)
andJ- fdp exists if and only if its composite func-
A
tion K f is Lebesgue integrable on A. Here p(*)=
K(u(+)), JAK o fdy is a classical Lebesgue inte-

gral, and p is a classical Lebesgue measure.

Definition 1.5.'") Let (X, %) be a measurable
space, F: X—>P(R") - {$! be a set-valued map-
ping. If its graph is measurable, i.e. Gr (F) =
(2, y)EXXRY|yEF(2) ERXB(R"), then
F is called a measurable set-valued mapping on X,
where B(R ") is a Borel field on nonnegative real
number set R " .

Definition 1.6. Let (X, R, ) be a K-quasi-ad-
ditive fuzzy measure space, F:X—>P(R") —{$} be
a measurable set-valued mapping, A € R. Define

K
(K) [ Fei = {[| 741 1€ SaF)}. Then
A
(K) J-AF dy is called a K-quasi-additive fuzzy inte-

gral of set-valued mapping F on A, where K is an
inductive operator, Sa(F)={f€ LY (2)|f(z)€E
F(z) a.e. to A}, i.e. S4(F) denote all of the in-

tegrable selections of F on A. If (K) J-AF dpe # 8,

then F is called K-quasi-integrable on A.

Remark 1. Obviously, by Definition 1.6, Lem-
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ma 2 and Definition 1.4, we know that f is K — p
integrable on A if f € S, (F), which implies

-IUAK « fdu ] <+ o0 or LKofd#< oo,

Definition 1.7.17) Let (X, R, ) be a K -quasi-
additive fuzzy measure space, A € R, a set-valued
mapping F be K-quasi-integrable on A. If there ex-
ists an integrable function h € L) (#) such that the
norm || F(z) | I=wgl.;g)|w|<h(.r) for all x € X,

then F is called K-quasi-bounded integrable.

Definition 1.8.!7) Let real number sets A, BE
P(R™) - {¢!, if the following conditions (1) and
(2) are fulfilled: (1) for each xq€ A, there exists a
0 € B such that zq<yg; (2) for each yo € B, there
exists an o€ A such that zo<Xy;. Then we call A
is weaker than B, writing A<<B.

Definition 1.9. Let real number sets A, B €
P(R") — {¢}|. Define the generalized quasi-sum,
quasi-multiplication and number multiply operation of
sets A and B, respectively:

APB:=ixPylxz€ A,y € B},
ARB:=1zQylx € A,y € Bi,
EQRQA: =Rzl x € A}

for arbitrary constant & =0.

Definition 1. 10. Let ( X, ) be a measurable
space, F and G be measurable set-valued mappings
on X. Denote their extension operations as follows:

(1) (FUGYz)=F(z)UG(x), (FNG)(x)
=F(z)NG(z) for al z€ X;

(2) (FOG)(z)=F(2)DG(z), (FRG)(x)
=F(z)QG(z) for all x€ X;

(3) (e@F)(2)=a@F(z) Vz€ X and for

any constant « € R *
2 Elementary properties

In this paper, for simplicity, as for the given K-
quasi-additive fuzzy measure space (X, R, 1), we al-
ways suppose K is a given inductive operator, and
Sa(F) denote all of the integrable selections of set-
valued mapping F on A.

Theorem 2. 1. Let (X, R, #) be a given K-
quasi-additive fuzzy measure space, F and G be mea-
surable set-valued mappings, which are K-quasi-inte-

grableon A€ R. Then FUG, FNG, and FBG

are K-quasi-integrable on A. And if the composite
function K° f and K ° g are square integrable for any
fE€ SA(F) and g € S4(G), then set-valued map-
ping FQG is K-quasi-integrable on A, too.

Proof. (1) We first prove that FU G is K-
quasi-integrable on A .

In fact, let (K) J-AFd;l?ﬁ‘ﬁ and (K) J-AGd;li

$. Thus, there certainly exist the integrable selec-
tions f€ S, (F) and g € S4(G) on F such that
flz)EF(x)a.e. to A and g(2)EG(x) a.e.
to A, respectively. In addition we can obtain

K)
x(,:jA fd,u=K'1UAK °fd#:| <o
and
K
Yo = JA gdp = K IUAK °gd,u:|<+ o,

Leth(z)=f(x)V g(x), for all x € A. Then
hz)EF(z)UG(2)=(FUG)(z) a.e. to A,

and K ~!is strictly increasing. At the same time, we
have
(K)
hdp =K_1U K-(fV g)d,u]
A

J (K )V (K * g)du]

K|

<K (Ko 5+ Ko pdu]
UK fd,u+jAK°gd,u:|
ll

=k Ko fdu [O KK - gdp]

<+ o0,
Therefore, A is an integrable selection on FU G .

(K)
rdp € (K)| (FU
A A

G)dp#¢. By Definition 1.6, we know that set-val-
ued mapping FU G is K-quasi-integrable on A .

Consequently, z, =

(2) Similarly, let A(x) = f(z) A g(z) for
each x € A, we can prove that F{) G is K-quasi-in-
tegrable.

(3) Let m(z) = f(z)Dg(z) for every z €
A, then m(z)E€F(2)BG(z)=(FBG)(z) a.

e. to A, and we have

;K)mdﬁ _ K"‘UAK - (f D g)dy |

:K_II:JA(K o f+ K- g)d,u]
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=K‘1UAK . fdu | K‘1UAK - gdu |

<+ oo,
Hence, m is an integrable selection on set-valued

. K
mapping FEDG. Let z,= J mdg. Then
A

2 €(K) | (FOG)di#$.
Consequently, FEBG is K-quasi-integrabie on A .
(4) Let ¢(z) = f(x)Xg(x) forany z € A.

Then ¢(z) € F(z)®G(z)=(F®G)(z) a.e. to
A, because K° f and K ° g are square integrable,

that isJA (Ko f)*du< + o, JA (Keg)*du< + oo

and K ~!is strictly increasing. According to Lemma 2
and Schwarz’ s inequality, we obtain

f:K)md[z =K‘1UAK  (f @ g)dy ]
=K '(K -« /)(K° g)du]

<[], o ]
o0 ]

1

2

]

1
-1 Ko 2d )2
QK [UA( g) du ]
<+ o0,
Thus, m is an integrable selection on F& G, and

” (K)
2 = j md;e(mjA (FQG)dp#$. In this

A
case, the set-valued mapping FQ G is K-quasi-inte-
grable on A.

([ e

Theorem 2. 2. Let (X, %, z) be a given K-
quasi-additive fuzzy measure space, a set-valued map-
ping F be K-quasi-integrable, and A, BER with

ACB. Then (K)LFd;}<(K)J'BFd;.

Proof. Let x4 € (K) JAFdﬁ # ¢. Then there
exists an integrable selection f& Sy (F) such that
(K)
w0 = [ fdic = KO[[ Ko fdu]<s o,
A A

because A C B, considering the monotonicity of
Lebesgue’s integrals and the strictly increasing prop-
erty of inductive operator K ~1, we can obtain

Zo =K‘1UAK « fdu < K—lUBK . fdy |

(K)

=f fap € (K)j Fdji.

B B

Let yo=K ! [IBK ° fd#:'. Then they satisfy xgq<<
w€(K) [ Fdir.

Using the similar method, we may prove that

for any v € (K) JBFd,& # ¢, there exists an x9 €
(K) JAFd,ﬁ such that x¢<{yo. Thus, by Definition
1.8, we get (K)LFd@«K)[BFd;.

Theorem 2.3. Let (X, R, 1) be a K-quasi-addi-
tive fuzzy measure space, the closed set-valued map-
ping F and G be K-quasi-bounded integrable, and

F<G, AER. Then (K)JAFdﬁ<(K)jAGdﬁ.

Proof. Let zo € (K) JAFd/} # ¢. Then there

exists an integrable selection f& S, (F) such that
(K)

zo = | fdi = K“UAK « fdu <+ o,
and f(z)EF(x) a.e. to A.

Because F(z) <G (x) for every x € X, let
g(z)=suplw|w€G(zx), o=f(x)!.

Since G (x) is a closed set, we have g(x) €
G(z) and g(z)=f(z). G is bounded integrable,
so there exists a K — p integrable function 2 €
L% (&) such that

NG(z)l = sup | w < h(x).
€G(z)

Then from {wlwéG?x),w?f(:c)}C‘w|w€
G(z)}, we get

glx)= sup @ << sup | @ |
w€ G(z), w2 f(2) w€ G(x), w=f(z)
< su;(J) lwl= | G(x) | <h(z).
w€G(x

Therefore, the function g is K — ¢ integrable, i.e.

g€ SA(G). Let yo= K_I[IAK ° gd/z]. Then we
—_ -1 o -1 o =
have o = K[| K< sdp | <K '[[ K gdu]
(K)
yp = j gdu € (K) JAGd;]. On the other hand, for
A
any v € (K) J‘AGdﬁ # ¢, there exists an integrable se-

lection g€ S4(G) such that y0=K_1UAK ° gd,u] )

From F(x)<G(x) for all x€ X, let
f(z) = inflo | w € F(z),w < g(x)}.
Because F{z) is a closed set and bounded integrable,
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similar to the above proof, we can obtain f(z)<C
g(z) and the function f is K — g integrable, too.
Thus f€ S, (F) and
e -1 o -1 K °
yo =K [JAK gd/.t:|> K [IA fd,u]
K
=| fdp
A
Hence, by Definition 1.8, we obtain
(K) jAFd#<(K) _[AGd#.

=z, € (K)fAFd,}.

Theorem 2.4. Let (X, R, 1) be K-quasi-addi-
tive fuzzy measure space, if inductive operator K sat-

isfies K(a)K

F is K-quasi-integrable. Then for every constant a ==

0and AER, (K) JAa®Fd;} = a®(K) JAFd,l.

‘i‘) =1, and the set-valued mapping

Proof. Obviously, the conclusion holds whenev-
er a =0. Without loss of generality, let a >0. Actu-

ally, on the one hand, for every x4, € (K) _La X

Fdu # ¢, there exists an integrable selection f €

Sa(a@F) on a@F such that
~ [ da-k ][ k- ren] <
o= | fdi=K JA Fdp | < + oo,

Thus f(z)E(a@F)(z)=a®F(z) a.e. to
A.

Let g(:c):%(g)f(x) for all x € X. Applying

Definition 1.2 and the hypothesis condition, we ob-
tain

i ®g(z) =a @+ ® f(x)

(kx| L)]® )

=K' ® f(z) =1Q f(z)
=f(z).
Therefore, f(z)=a®g(z)€Ea@®F(z) a.e. to
A, and g(z)EF(x)a.e. 10 A.

By Definition 1.2 (5) and (6), we can obtain
el ([l L oo
=K-1UAK(l)K(f(x))]dy

[( Il x fdﬂ

JK fdu |

L
a
+ oo

Hence, the function g is K — x integrable, thus g is
an integrable selection of F, i.e. g€ S4(F), and

J;K)gdﬁG(K) Fdir. Tn this case, we have
o =K‘1UAK  fdp ]
=k K(a®g(x))dp]
=k '[| K(a)K(g(2))dy |
=K"1[K(a)fAK o gd#]

=K' K@@ K[ K - gdu ]

(K)
=aq ®JA gdy € a ®(K)JAFd;}.

Consequently,
(K)JAa ® Fdi C a ® (K)JAFd,&.

On the other hand, for any y; € a &
(K)jAFd,; # 4, we have —® o € (K)JAFd;}.

Then there exists an integrable selection f € S4(F)

on F such that
L@y rdi = K[ Ko fau]<+ o
a Yo = A H = A H .

Let g(z)=a®f(z) forall z€ X, f(x)EF(x)
a.e. to A and fELi,(;}).

Therefore, g(z) € a@F(z)=(a@F)(z)
a.e. 10 A.

Similar to the above proof, we can easily prove
g€ SA(a®F), and
(K)

vw=a®| fdu=a ®K‘1UAK  fdu ]
=K [K(a)] K - fdu]

= k] K(a)(K(f(x)))ds ]

=k K(a ® f(2))dy]

=fma ® fdi € (K)[ o ® Fdi.

Consequently, a ®(K) J'AFd;}C(K)J a@Fdy.
A

Furthermore, we have

(K)JAa X Fdy =a® (K)JAFd;}.

Theorem 2.5. Let (X, R, 1) be a K-quasi-addi-
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tive fuzzy measure space, a set-valued mapping F be
K-quasi-integrable, A, BER. Then

(K[ Fdi < (K] Fda @ (K)| .

Proof. Let zo € (K)j Fdj # $. Then
AUB

there exists an integrable selection f & S (F) such
(K)

that x4 = f |, fd- AsAUB=(A-B)UB and
AUB

(A-B)NB=¢%, A-BCA.

From the Lebesgue’s integral property and the
increasing of K ~!, we can derive

2o =K"1UAUBK .+ fdu |
ZK_IUA—BK s fdpt .[BK ’ fd'u]
<k ([ Ko rauJ@ k][ K - reu].

Let v :=K“UAK  fdu ], 20 :=K-1UBK  fdu .
Then

zo K0 D 2o
_J‘(K) & 69J-(K) d‘ c (K)J- Fd"
=], fdu 5 fdu Jfde
@JBde.

On the contrary, for every wo € (K) L‘Fd/l D

(K) [BF dp, there certainly exist the integrable se-
lection f€ S4(F) and g € Sg(F) such that
_qr -1 ° -1 o
wo= K UAK fdu | ®K UBK gdu .
Let h(z)=f(z)ANg(x), foral z€ X, from
Theorem 2.1 (2), we can prove that function A is an

integrable selection of F. Furthermore, we can ob-
tain

o =K“1UAK o fdu + jBK . gdu |
>K‘1UA_BK o hdy + JBK < hdu )
_ -1 °
=K [JAUBK hd,u].
Let xo := K_IUAUBK ° h], clearly, wg==x¢ and
" hdpe) [ Fa
[ e ra
o JAUB # aus. ¥
By Definition 1.8, we have (K) -[AUB Fdp <

(K) | Faa®(K) | Fdi.

Theorem 2.6. Let (X, R, ) be a K-quasi-addi-
tive fuzzy measure space, the set-valued mapping F
and G be K-quasi-integrable, A€ R. Then

(1) (K) [ (FUG) i = (K) [ Fda U
(K)JAGd,&;

@) (K) [ (FNG)di = (K) | Fein
(K)JAGd,u.

Proof. On the one hand, for

any o€ (K) JA (FUG)du#3,

there exists an integrable selection m € S4(FU G)
on FU G such that

K )

T = IA mdy = K I[JAK ° mdy:[<+ oo,
Here, the function m € L} (x) and m (z) € (FU
G)z)=F(z)UG(x) a.e. to A, which follows
that m(z)E€ F(z) a.e. to A or m(z)€ G(x)

a.e. to A. Thus, m is an integrable selection of F
or G, i.e. mE€ S,(F)US4(G), which means that

:coG(K)JAFd;}U(K)fAGd;}.

Consequently,
(K)_[A(F U G)di C (K)fAFd,; U (K)jAGd,;.

On the other hand, for each xo € (K) JAFdﬁ U(K)
J Gdp, without loss of generality, we let zo €
A
(K )I Fdg. Then there exists an integrable selec-
A

tion f&€ S, (F) such that IO:(K)IAfd'[‘ and f€

Li(g),i.e. f(z)EF(z) a.e. to A. In addi-

tion, f(z)€EF(z)CF(z)UG(z)=(FUG)(x)
a.e. to A, thatis, fE S4 (FUG) and 2o €

(K) | (FUG)d.
Therefore,
(k[ Fda U (K)| 6di © (&) (F UGz,
Thus, we can obtain
(K[ (F U 6 = (K[ Féi U (K)| G

We can use the similar method to prove (2), so omit it.

Theorem 2.7. Let (X, R, #) be a K-quasi-addi-
tive fuzzy measure space, the set-valued mapping F
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and G be K-quasi-integrable, A €R. Then
(K) jA (FDG)dz =(K)JAFd,u69(K) JAGd,L

Proof. In fact, for any xOE(K)JA (FPG)

du#$, there exists an integrable selection 2 € Sy (F&
(K)

G) such that 10=J hdu =K_1U K°hd,u:|<
A A

+oand h(z)E(FPRG)(x)=F(x)PBG(z)
a.e. to A. Hence, there exist y, € F(x) and 2, €
G(x) such that h{(z)=y,Pz,a.e. to A. Thus

0 =K | K(5. @ 2)dn]
— k[ (K(3) + K(2)du |
= k[ KO J K [] K2)du]
[ @ Cedi e (0] P

D KJAGd;} .
Using the similar method, from Theorem 2.5, we
may prove that the anti-inclusion is tenable.

Hence,

() (F®G)dis = (5[ Fai @ (K)| Gdz
holds.

3  Generalized monotone convergence theo-
rem

In this section, we first give the monotonity def-
initions of the sequence of sets and the set-valued
mapping, and then, we discuss that the correspond-
ing K-quasi-additive fuzzy integrals satisfy monotoni-
ty whenever the sequence of the K-quasi-integrable
set-valued mappings satisfies monotonity, i. e. the
generalized convergence theorems hold.

Definition 3. 1.[%) Let a sequence of sets
{A 1, CP(RY), A=lzlz= klimx,,b, x, €
A, b, if A,CA,41, n=1,2,>. Then {A,| . is

called monotone increasing convergent to A, simply
denotedas A, } A. Let A={zlz=limz,, x, €

A, if A1 CA,, n=1,2,-. Then {A, 17 | is
called monotone decreasing convergent to A, simply
denoted as A, v A .

Definition 3.2.'%) Let (X, R, 22) be a K-quasi-

additive fuzzy measure space, A € R, the sequence of
measurable set-valued mappings | F,} " _; be K-quasi-
integrable, and the set-valued mapping F be K-quasi-
integrable, too. If (1) S, (F,)CSs(F,+1), n=1,
2,5 (2) for any f€ S,(F), there always exists a
monotone increasing integrable selection subsequence
S SA(F,,‘) (k=1,2, ) such that ]}Lrgfk(:c) =
f(z) for all z€ A. Then {F,},_, is called mono-
tone increasing convergent to F, written as F, } F.
If (3) SA(F,+1)C Sa(F,), n=1,2,; (4) for
each f€ S,(F), there always exists a monotone de-

creasing integrable selection sequence f, € Sa (F,)
such that lim f, (z) = f(x) for all z € A. Then

|F :’:1 is called monotone decreasing convergent to
F, writtenas F, ¥ F.

Theorem 3.1. Let (X, R, #) be a K-quasi-addi-
tive fuzzy measure space, A € R, the sequence of

measurable set-valued mappings { F, |, be K-quasi-
integrable, a measurable set-valued mapping F be K-
quasi-integrable, too. If F, # F, then

(K) [ Fdic (KD | Faz.

Proof. For an arbitrary certain natural number
n, let y€E(K) J.AF"d'& :=A,. Then there exists an
integrable selection g € S, (F, ) such that

" i [ K - gdy]
y—fA gdu=K JA gdy | <+,

Because Sy (F,) T Ss(F,+1), n=1,2,-, it

(K)
is easy to know g € S4,(F,+1) and y = j gdu €
A
(K)J-AF,,Hd;}. Therefore, A, = (K)fAF,,d;} -

(K)JAF,,+1dZ( :An+1.

On the other hand, for any y € (K) J- Fdu #
A

(K)
$, there exists A € S4(F) such that y = hdu.
A

From F, * F and Definition 4.2, we can know
that there certainly exists a monotone increasing inte-
grable selection subsequence h,,b € S,(F, ";) (k=1,2,

.-+, ) such that kliznh,,b(x)=h(x) forall z€A.

Consider the coutinuity and monotone increasing
property of inductive operators K~ ! and K. From
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the Monotone Convergence Theorem of Lebesgue’ s

integrals, we can obtain
' T
hmy,,‘ 2239, \ h,,‘d,u

k>

= limK'lUAK  hoydu ]

k—> o0

= K‘l[limJ.AK o h,,kd,l]

k—> 0,

:K"l[JAK(}il?ohn‘)dy}

:K—l[jAK s hdp:l= J’;K)hd;l = y.

(K)

Obviously, J h,,kd;} €(K) IAF ", dg . By Definition
A

3.1, we can obtain (K) JAF,,d/l * (K) fAFd;].

Theorem 3.2. Let (X, R, ¢2) be a K-quasi-addi-
tive fuzzy measure space, A € R, the sequence of
measurable set-valued mappings { F,, | :; 1 be K-quasi-
integrable, a measurable set-valued mapping F be K-
quasi-integrable, too. If F, ¥ F, then

(K) [ Fudic v (K) | Fdi.

Proof. First, similar to the proof of Theorem
4.1, it is obvious that

Ayer = (K)jAFmdﬁ - (K)jAF,,d,; = A,.

Second, for every ¥ y€ (K) JAF dp# ¢, there ex-

ists an integrable selection f€ S, (F) such that

y = J;K)fd;} = K“UAK o fdp:|<+ oo

Because F, ¥ F, by Definition 3.2, there exists a de-
creasing integrable selection sequence f, € Sa (F,)
(n=1,2,,) such that lgnf,,(x) = f(z) for all

T€EA.

Therefore, we can obtain

(K)
limy, :limJ‘ fody = limK‘l[J K - f,,dp:'
n—>® n—~/ A n—=o0 A

:K-l[limjAK  fodu ]

= k|| KClimf,)du ]

=K‘1UAK . fd/l:|= f:()fdfz =y.

On the other hand, it is obvious that
(K)
dp € (K j F,dp.
J L p€(K) | Fadp
Thus, {from Definition 3.1, (K)J. F,duy v
A
(K) JAFdﬁ holds.
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